НОВОСТИ    БИБЛИОТЕКА    КАРТА САЙТА    ССЫЛКИ    О ПРОЕКТЕ  

предыдущая главасодержаниеследующая глава

Шестое чувство

Всем известны слова "шестое чувство", часто характеризующие что-то вроде интуиции или предчувствия. Употребляется это словосочетание в тексте примерно следующего содержания: "И тут какое-то шестое чувство подсказало мне (ему)..." - дальше описывается, что подсказало чувство. Это выражение пошло от известного факта, что число чувств человека равно пяти: зрение, слух, осязание, обоняние, вкус. Однако человек чувствует, несомненно, больше: чувство равновесия, чувство времени, веса (правда, довольно грубые). Мы ощущаем тепло на расстоянии. Что это? Осязание? Вообще-то да, но тогда почему на расстоянии? Человек чувствует чужой взгляд, чувствует, как меняется давление, аллергик "чувствует" присутствие аллергена и т. п. Так что разнообразных "шестых" чувств предостаточно.

Однако человек имеет, прямо скажем, весьма ограниченный чувствительный аппарат. Окружающая нас живая природа может предоставить гораздо более широкий перечень разнообразнейших чувствительных элементов. Это системы акустического видения дельфинов, ультразвуковые локаторы летучей мыши, тепловое видение змей, умение некоторых животных ориентироваться в электростатических, электромагнитных, тепловых, ультрафиолетовых и других полях. Например, у собак почти фантастический нюх, крысы слышат ультразвук, змеи чувствительны к вибрации и т. п.

Как научить робота хотя бы малой толике этого богатства? Не будем отчаиваться, современные очувствленные роботы обладают не меньшей гаммой чувствительных элементов, не все из них позаимствованы у природы, есть и собственные "патенты" человека.

Чувствительные элементы роботов называются датчиками
Чувствительные элементы роботов называются датчиками

Чувствительные элементы роботов называются датчиками. Датчики промышленных роботов можно разделить на два больших класса: внутренние и внешние. Первые предназначены для контроля за функционированием самих роботов. Они устанавливаются в приводах исполнительных механизмов. Вторые предназначены для контроля за состоянием тех объектов, с которыми работают промышленные роботы. С помощью этих датчиков определяется положение, форма и другие характеристики детали, заготовки, готового узла.

Датчики внутренней информации - своеобразный самоконтроль робота, предназначенный для определения положений, углов поворота, скоростей и моментов руки, кисти, плеча и других механизмов. Человек тоже обладает подобной чувствительностью. Закрыв глаза, на основании одних только мышечных ощущений мы можем не только принять любую позу или сделать нужный жест, но и совершить более сложные манипуляции, например переставить телефон с тумбочки на стол.

Если управление роботом осуществляется на основе предельных выключателей по принципу "включено - выключено", то сами выключатели и являются такими внутренними датчиками: довел робот руку до положения, в котором выключатель сработал, значит, нужная фаза движения реализована. В более сложных случаях здесь используются сервомеханизмы с обратной связью: потенциометры, сельсины, резольверы, аналого-цифровые преобразователи и т. п. Датчики положения руки робота в большинстве случаев устроены так, что преобразуют разнообразные перемещения в электрические импульсы. Эти-то "нервные" импульсы и делают робота "чувственным". Датчиков у робота целая куча: электромагнитные, емкостные, индуктивные, резистивные (на сопротивлениях), фотоэлектрические. Работа, например, потенциометра основана на изменении сопротивления проволоки или пленки при изменении угла поворота. Надежность потенциометра из-за наличия контакта, как правило, невысокая: максимальный срок службы около двух миллионов оборотов. В конструкции сельсина используется принцип работы трансформатора. Первичная обмотка питается однофазным напряжением. Напряжение, индуцированное во вторичной обмотке, определяется углом поворота. Сельсин как бесконтактное устройство, основанное на принципе электромагнитной индукции, обладает высокой надежностью, помехоустойчивостью, однако точность сельсинов ограничена значением в полградуса.

Резольверы были разработаны позднее сельсинов и основаны на тех же принципах. Однако на статоре и роторе резольвера располагаются по две обмотки, сдвинутые на 90 градусов друг относительно друга. Отсюда и точность у резольверов больше, чем у сельсинов. Индуктивные датчики устроены так же, как и сельсины, только здесь в электрическое напряжение преобразуется линейное напряжение вторичной обмотки относительно первичной. Точность такого датчика порядка одного миллиметра.

Аналого-цифровые преобразователи представлены генератором импульсов. В фотоэлектрических генераторах на дисках, соединенных с осью вращения, имеются прозрачные и непрозрачные участки. В качестве источников света используются лампы или другие элементы, а в качестве регистрирующих элементов - фототранзисторы, гелиевые элементы и другие устройства. Имеются генераторы, основанные на принципе информации с разрешающей способностью до нескольких тысяч импульсов на один оборот. Существует много датчиков счеточного типа, где значениям 1 и 0 соответствуют проводящие и изолированные участки кодовых пластин. Наличие контакта обусловливает определенное ограничение долговечности.

Существует и масса других датчиков. Например, датчики, интегрирующие скорость, подобно электродвигателям, магнитные счетчики и т. п. Большинство из этих датчиков самоконтроля роботов зародилось еще в недрах первого поколения, это благодаря им удается повысить точность позиционирования и обеспечить "деликатное" обращение с хрупкими, сыпучими и "текучими" грузами.

Разумеется, при переходе ко второму поколению эти внутренние "чувства" робота расцвели пышно и многообразно, однако главное внимание чувствительного аппарата второго поколения роботов направлено вовне, туда, где кипит производственная жизнь.

Среди наиболее простых и наиболее распространенных датчиков внешней информации можно отметить так называемые "контактные" датчики - осязание промышленного робота. На концах схвата - руки робота устанавливаются специальные выключатели, которые фиксируют факт прикосновения к детали или станку и посылают импульс в "мозг" робота. Десяток таких выключателей, расположенных не только внутри пальцев схвата, но и на наружной его поверхности (сверху, снизу, справа и слева), помогают роботу "на ощупь" определить положение детали или возникшего препятствия. "Я дотронулся правым датчиком до заготовки, значит, она справа, - "соображает" робот, - передвину-ка я руку поправее, теперь дотронулся левым, значит, многовато, примерно половину пути назад будет в самый раз" - так "рассуждает" робот, на ощупь ориентируясь в рабочей зоне.

Однако человек, манипулируя с предметом, фиксирует не только факт соприкосновения, но и ощущает давление руки на предмет через кожу и таким образом может регулировать усилие сжатия соответственно весу и прочности предмета (вспомним бумажный стаканчик). Такой датчик представляет собой, например, слой электропроводящего вспененного полиуретана, заключенного между тонкими металлическими пластинами. В зависимости от давления расстояние между пластинами меняется и соответственно изменяется электрическое сопротивление цепи. Эти свойства искусственной чувствительной кожи уже используются в области протезирования. Механизм управления силой сжатия руки с обратной связью по давлению предотвращает повреждение предмета и самой искусственной руки.

Среди датчиков особенно удобны бесконтактные: оптические, электромагнитные, ультразвуковые, струйные, так как из-за отсутствия непосредственного соприкосновения не приходится бояться ударов об объект или плохого контакта, кроме того, они "чувствуют" предмет заранее, и в этом их основное преимущество. Они фиксируют объект до непосредственного соприкосновения - и это уже "замашки" своеобразного зрения роботов.

Электромагнитные контактные датчики работают на расстоянии от нескольких миллиметров до нескольких сантиметров. В них используется эффект изменения сопротивления магнитной цепи или изменения импеданса катушки при прохождении магнитного или электрического поля через объект. Они обладают высокой точностью и надежностью, однако взаимодействуют, естественно, лишь с металлическими предметами.

Куда более похожи на зрение оптические датчики. Если в качестве источников света использовать лампы, светодиоды, а в качестве светоприемников - фотоэлементы, фотодиоды, фототранзисторы, то для обнаружения детали и определения ее положения можно использовать пересечение объектом светового потока или световой импульс, отраженный от предмета. Этот несложный "глаз" состоит из двух линзочек, за которыми прячутся светодиод и фотодиод. Обе линзы сфокусированы на одну точку, расположенную в нескольких десятках миллиметров. Фотодиод не уловит сигнала светодиода, пока в этой точке не окажется какой-нибудь поверхности. Чтобы датчик не реагировал на внешнюю засветку, светодиод излучает свет с определенной частотой, на которую настроен и фотодиод.

Ультразвуковые датчики представляют собой систему, состоящую из передатчика и приемника сигналов. С помощью отраженного звукового сигнала можно обнаруживать объекты и измерять расстояние до них. Ультразвуковые датчики имеют по сравнению с оптическими следующие преимущества: они могут обнаруживать прозрачные объекты, в том числе и неметаллические; срок службы генератора колебаний практически не ограничен; их показания не зависят от освещения; их можно использовать на открытом воздухе и при наличии помех: на них не оказывают значительного влияния пыль, пар и другие факторы среды; измерения с ними можно проводить под водой и т. д.

Принцип действия датчика заключается в акустической локации пространства вблизи захвата. Посланные датчиком ультразвуковые импульсы отражаются от ближайшего предмета, и измерение времени между посылкой импульса и приходом отраженного сигнала позволяет со сравнительно большой точностью судить о расстоянии от предмета до захвата. Особенностью такого устройства является применение в качестве излучателя и приемника одного и того же обратимого преобразователя, разработанного специально для этих целей и представляющего собой разновидность конденсаторного микрофона.

Ультразвуковые датчики, помимо измерения расстояния, позволяют решать и более хитрые задачи, например, точного наведения оси схвата на предмет. Если на каждом пальце схвата поместить по одинаковому датчику, то они образуют уже два глаза - "симметричную стереопару", и при равенстве расстояний обоих датчиков до детали происходит совмещение оси схвата с осью предмета. Это полезное свойство применимо, однако, лишь для предметов правильной формы.

К сожалению, ультразвуковые датчики обладают ограниченной способностью для обнаружения микроскопически малых тел, что связано с относительно большой длиной ультразвуковых волн.

Существует подход, при котором воздушную струю можно использовать подобно пучку света. Этот датчик можно применять как своеобразный бесконтактный выключатель. Таким образом, можно измерять расстояние, превышающее диаметр сопла примерно в пятьдесят раз. При измерении расстояния до движущихся объектов получаются несколько завышенные значения вследствие завихрений воздуха вокруг самих объектов. Чувствительность струйных датчиков может быть даже выше, чем оптических.

Тактильные, оптические, ультразвуковые, струйные - это лишь малая толика используемых датчиков робота. Так же, как схваты, чувства робота ориентированы на тип производимой работы. Кое-где достаточно осязания, в другом процессе не обойтись без примитивного зрения, в третьем - нужны "нежные струи" воздушных датчиков. Иногда необходим и инфракрасный локатор, весьма перспективно и лазерное "зрение". Если писать обо всем подробно, то каждое из перспективных направлений очувствления заслужило бы по отдельной книжке. Нам же не терпится посмотреть на очувствленного робота.

В особом конструкторском бюро технической кибернетики Ленинградского политехнического института имени М. И. Калинина проводят экспериментальную проверку возможностей промышленных роботов, оснащенных целой гаммой чувствительных датчиков.

Захват одного из роботов представляет собой лапу с двумя пальцами, на внешней поверхности которых расположено целое поле тактильных датчиков, представляющих собой подпружиненные металлические пластины. Набор датчиков выполнен в виде "рыбьей чешуи", что позволяет покрыть всю поверхность пальца, практически без нечувствительных зон. На каждом пальце размещено по 12 таких датчиков, так что прикосновение к любому участку поверхности пальца приводит к замыканию соответствующего контакта, связанного с подвижной пластиной датчика, и информация о месте прикосновения передается в систему управления роботом. Кроме контактных тактильных датчиков осязания, на пальцах захвата размещены двенадцать светолокационных датчиков, которые сигнализируют о приближении захвата к предмету на расстоянии двух-трех сантиметров. Они расположены на концах пальцев, на боковой и торцевой поверхностях.

Так как работа светолокационного датчика основана на обнаружении светового потока, отраженного от предмета, то для исключения влияния внешнего освещения на работу датчика используется специальным образом модулированный по интенсивности световой поток.

В процессе работы робота возникает необходимость получать сведения не только о приближении или прикосновении к предмету, но и о наличии предмета внутри захвата между пальцами. Для этого на внутренней поверхности пальцев размещены еще четыре фотодатчика, работающих не на отраженном свете, а на прямом просвечивании межпальцевого пространства. Они позволяют контролировать наличие предмета между губками, а также ориентировочно судить о положении предмета по количеству перекрываемых лучей. Столь мощное очувствление дает роботу второго поколения невиданные доселе возможности поиска предметов, нежного обращения с деталями, сборки разнообразных и непростых конструкций. Для примера перечислим операции, выполняемые двуруким роботом второго поколения с тактильным очувствлением, который был разработан с целью исследования методов координированного управления двумя руками при их совместной работе. Робот выполняет следующие операции:

- перемещение предметов, которые нельзя взять одной рукой, обеими руками с переворотом в процессе перемещения;

- перенос трех деталей прямоугольной формы, при этом средняя удерживается благодаря силе сжатия со стороны боковых;

- сверление ручным коловоротом; одна рука нажимает коловорот, а вторая вращает его;

- вычерчивание линий по лекалу, удерживаемому другой рукой;

- свинчивание болта и гайки; одна рука держит гайку, а другая головку болта и вращает ее, перехватывая;

- сборка узла из двух деталей, соединяемых болтом и гайкой, и др.

Робот выполняет следующие операции: свинчивание болта и гайки: одна рука держит гайку, а другая головку болта и вращает ее, перехватывая...
Робот выполняет следующие операции: свинчивание болта и гайки: одна рука держит гайку, а другая головку болта и вращает ее, перехватывая...

Все эти процессы обеспечиваются тонкой координацией действий обеих рук робота по сигналам тактильных датчиков. При этом в процессе выполнения одна рука выполняет роль ведущей, а вторая отслеживает ее положение.

Этот метод управления, названный авторами методом вертуального эталона, как раз и исследовался на разработанном роботе.

предыдущая главасодержаниеследующая глава











© ROBOTICSLIB.RU, 2001-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://roboticslib.ru/ 'Робототехника'
Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь