НОВОСТИ    БИБЛИОТЕКА    КАРТА САЙТА    ССЫЛКИ    О ПРОЕКТЕ  

предыдущая главасодержаниеследующая глава

Роботы будущего

"Решающее значение приобретает ныне единая научно-техническая политика, - говорил товарищ Ю. В. Андропов на июньском (1983 г.) Пленуме ЦК КПСС, - нас ждет огромная работа по созданию машин, механизмов и технологий как сегодняшнего, так и завтрашнего дня".

Будущее робототехники и ее перспективы зиждутся прежде всего на перспективах развития основных составляющих роботов: его эффекторов, рецепторов и интеллектуального "мозга". Однако мы намеренно обеднили бы наш разговор, если бы ограничились лишь таким чисто формальным приемом прогнозирования. Кроме перспектив развития составляющих роботов, следует коснуться перспектив расширения их "жизненных интересов" - проникновения роботов в нашу жизнь.

На протяжении всей книги мы намеренно ограничивали себя, ведя изложение лишь о достижениях сегодняшнего дня, касаясь внедренных и внедряемых разработок, описывая уже функционирующие экспериментальные или опытные образцы. Нигде мы не переходили грань, отделяющую действительность от фантазии. Только в этой главе мы позволим себе немного помечтать.

Начнем с "мозга" роботов - компьютеров. Специалисты утверждают, что к 2001 году мы сможем втиснуть в один кубический сантиметр миллион миллиардов молекулярных электронных контуров, это, вероятно, больше, чем общее число всех транзисторов, изготовленных до сих пор.

Terra computera - "компьютеризованная земля" - вероятно, так не без оснований будут называть нашу планету далекие потомки. Привычный нам счетный прибор - компьютер, - несомненно, станут именовать по-другому, ибо его "счетная" способность (от латинского слова computo - считать, вычислять) сменится способностью думать, рассуждать, мыслить. Возможно, его будут величать "когитер" - мыслитель (от латинского coguto - мыслю, думаю, рассуждаю). Эти прогнозы и фантазии отнюдь не обгоняют сегодняшние факты.

Конструкторы приступили к разработке компьютера пятого поколения, который предполагается создать уже в 1990 году. Он должен обладать способностью собирать, обобщать, анализировать и классифицировать информацию, "слушать" и "понимать" человека, "говорить" с ним на его языке.

Этот проект ставит своей целью не столько достижение новых рекордов быстродействия, хотя уже запланирован один миллиард операций в секунду, сколько повышение уровня подлинной интеллектуальности компьютера. Он характеризуется как "революционный", призванный "изменить всю сферу применения ЭВМ в обществе". Не будем пытаться предсказывать последствия этой революции, на то они и революционны, подождем несколько лет - увидим.

Возможно, что к тому времени, как компьютер действительно принесет в нашу обыденность революционные изменения, сам он претерпит еще большие изменения. По крайней мере сейчас элементная база современной электроники меняется столь быстро, что уже не кажется удивительной возможность создания схем на основе... органических молекул, которые являлись бы своеобразными реле и диодами. В создание новых поколений компьютеров включаются, казалось бы, такие далекие от электроники науки, как биохимия и генная инженерия.

Представьте себе компьютер, выращенный в пробирке, синтезированный с помощью особых бактерий! В настоящее время уже ведутся эксперименты с молекулами белка, которые могут выполнять функции двоичных запоминающих ячеек - основных строительных "кирпичиков" любого компьютера. Если эксперименты увенчаются созданием подходящей для этой цели белковой структуры, то массовое производство основных счетных элементов начнется с помощью генетически сконструированных бактерий-производителей.

Целью проведения таких, кажущихся порой утопическими, работ является создание еще более миниатюрных и быстродействующих счетных машин. Ведь добиться этого с использованием обычных материалов и технических способов уже не представляется возможным. Правда, созданные на кремниевой основе электронные схемы становились в последнее время все меньше и меньше и микрокомпьютеры достигли размеров одного микрона (миллионной доли метра). На сегодняшний день это верхний предел, технически достижимая граница. Однако в таком же объеме пространства могли бы поместиться сотни сложных белковых молекул, и каждая из них могла бы взять на себя выполнение функций подобной микро-ЭВМ.

Одним из "кирпичиков" биологического компьютера стала бы молекула-гигант с "памятью", химическая структура которой умела бы находиться в двух состояниях и работать в двоичной системе. Один из таких "кирпичиков" уже создан: специалисты синтезировали молекулу, в которой два протона и два электрона могут перемещаться от одного конца к другому. Конечно, для создания биокомпьютера только наличия такой молекулы еще недостаточно. Необходимы химические структуры, которые работали бы как диоды, то есть пропускали бы электрический ток лишь в одном направлении. Имеются уже довольно четкие представления о том, как должны выглядеть такие структуры: биомолекула - диод должна иметь на одном конце биоанод, а на другом - биокатод, которые будут соединены непроводящей средой.

Р. Метцгер и его коллеги из университета штата Миссисипи работают сейчас над созданием такого молекулярного диода. Проблема состоит в том, что необходимо успеть создать непроводящий "мост" до того, как химически прореагируют друг с другом части синтезированной молекулы, отдающие и принимающие электроны.

Если удастся получить хорошо действующую структуру такого рода, то на повестку дня встанет вопрос об их массовом производстве.

Здесь традиционные химические способы были бы, вероятно, слишком дорогостоящими и сложными. Поэтому все чаще специалисты начинают задумываться над использованием нового чуда науки - генной инженерии. В бактериях-производителях могут быть произведены такие специальные генетические изменения, что они смогут синтезировать нужную белковую конструкцию.

Однако только наличие большого числа необходимых элементов биопроцессора и биопамяти еще не создает ЭВМ. Каждый элемент необходимо разместить на своем особом месте и специальным образом соединить с другими. Ученые рассчитывают сделать это с помощью "химических проводов" - биосоединений с цепочной структурой, которые могут проводить электрический ток. Введение в компьютер необходимых данных и получение информации будут осуществляться с помощью точно сфокусированных световых лучей. Специалистам уже удался первый шаг в нужном направлении: они изготовили "полубиологический" полупроводник, обрабатывая слой белка толщиной в одну молекулу парами атомов серебра.

Не менее фантастичны и перспективы развития эффекторов робота - его исполнительных органов. В будущем, возможно, это будут управляемые электромагнитные поля, ловко и точно "перебрасывающие" тяжелые детали.

Исходя из уже достигнутого уровня современной промышленной технологии, нетрудно себе представить робота с исполнительным органом в виде силовой лазерной установки, и это не фантастика, ведь такой "плазменный нож" уже работает. Он создан сотрудниками Ленинградского политехнического института. Раскаленная струя ионизированного газа размягчает любой, даже сверхтвердый сплав, а следующий за ней резец легко снимает его верхний слой. Такие плазмотроны могут устанавливаться на металлорежущих станках всех типов.

За последнее десятилетие производительность лазерного промышленного оборудования возросла более чем в тридцать раз.

Лазерный луч по своим свойствам - уникальный тепловой источник. Он способен нагреть облучаемый участок детали до очень высоких температур за столь малое время, в течение которого тепло практически не успеет растечься. Нагреваемый участок при этом может быть размягчен, рекристаллизован, расплавлен, его можно вообще испарить. Дозируя тепловые нагрузки путем регулирования мощности и продолжительности, можно обеспечить любой вид термообработки: лазерный луч используется для поверхностной закалки, легирования (внесения примесей), для плавления при сварке, для испарения с выбросом паров при резке и сверлении. Лазерный луч не загрязняет обрабатываемую поверхность. Он дает возможность сверхточной прецизионной резки и сверления материалов, вообще не поддающихся механической обработке, таких, как композиты и сверхтвердые сплавы, керамика, изделия порошковой металлургии. В отличие от интенсивного электронного пучка он не требует вакуума и биологической защиты. Конечно, он не лишен и недостатков, особенно в начале своей карьеры: это еще сравнительно низкий КПД, высокая стоимость и пока еще недостаточная мощность лазеров, указывает один из создателей лазера, академик Н. Басов, лауреат Государственной и Нобелевской премий.

Еще сравнительно низкий КПД, высокая стоимость и пока еще недостаточная мощность лазеров
Еще сравнительно низкий КПД, высокая стоимость и пока еще недостаточная мощность лазеров

Советские физики и инженеры разработали много экспериментальных и опытных образцов технологических лазеров. Они действуют на опытных участках и в базовых лабораториях промышленных предприятий и отраслевых институтов. Такие участки появились на московских заводах имени Лихачева и имени Ленинского комсомола, ВАЗе, Череповецком металлургическом и Балтийском судостроительном имени Орджоникидзе заводах; в объединении Тулачермет, на других предприятиях, ускоряется подготовка к внедрению новой технологии, отрабатывается техника, обучаются кадры.

Однако широкое внедрение перспективной лазерной технологии не сводится только к созданию "хороших" квантовых генераторов для конкретных производственных целей - это, как говорится, полдела. Опыт показывает, что для успеха всего дела надо интенсивно разрабатывать специализированное технологическое оборудование, включающее лазеры, станки и роботы, необходимо выпускать полностью автоматизированные, оснащенные роботами лазерные технологические комплексы, создавать гибко перестраиваемые автоматизированные производственные системы на основе лазерной и вычислительной техники. "Облик лазерной промышленности будущего должен вырисовываться уже сегодня", - говорит Г. А. Абильсиитов, директор Научно-исследовательского центра по технологическим лазерам АН СССР, член координационного Совета по программе "Создание и производство лазерной техники для народного хозяйства".

Ведутся разработки лазерной технологии и за рубежом. В нынешнем году одна из японских исследовательских лабораторий в области машиностроения, субсидируемая правительством, планирует продемонстрировать небольшой "завод будущего", где станки, оснащенные лазерами, поднимут автоматизацию производства на новую, более высокую ступень. Эти станки будут осуществлять процессы обработки металлов, такие, как токарная обработка, сверление, фрезерование, выполняемые сейчас по отдельности, одновременно. Это сократит в два раза время, требуемое на механическую обработку деталей партиями, и на 60 процентов уменьшит число производственных процессов. Директор лаборатории М. Канаи говорит, что упомянутые новейшие станки появятся в промышленности не раньше, чем через три-пять лет.

Разнообразные рецепторы роботов во много раз превзойдут "числом и умением" наши человеческие чувства. Взаимодействие человека и робота поднимется на новую ступень.

Пишущие машинки без клавиатуры, печатающие "с голоса", системы регулирования движения, которые будут помогать водителю в выборе маршрута движения и сообщать ему о неожиданно возникающих на автострадах заторах, - вот некоторые из технических идей, реализация которых, вероятно, будет осуществлена к концу столетия.

"Общаться" с компьютерами, дисплеями, справочными бюро на базе ЭВМ и "банков памяти" станет предельно легко. Даже тот, кто не владеет специальными знаниями в области программирования и ЭВМ, просто скажет машине, чего он хочет, и получит ответ устно, а если пожелает, и письменно.

Вот самый фантастический пример "взаимопонимания" человека и машины.

Этот необычный эксперимент, который проводится в одной из лабораторий Станфордского исследовательского института в США, напоминает сцену из фантастического фильма. В небольшой изолированной кабине перед телевизионным экраном сидит человек в опутанном проводами шлеме и напряженно всматривается в белую точку в центре экрана дисплея. Неожиданно эта точка оживает и начинает быстро ползти вверх, затем, остановившись на мгновение, снова опускается вниз! Движения маленькой точки означают одно из самых поразительных достижений в кибернетике - создание компьютера, читающего человеческие мысли. Сконструированный по проекту нейрофизиолога и инженера-электроника Л. Пиннео, этот прибор сможет, по мнению автора, решить сложную проблему быстрой передачи информации компьютеру.

Сначала Л. Пиннео, как и многие исследователи, пытался научить компьютер различать человеческую речь. Но потом ему пришла в голову фантастичная мысль попробовать более прямой метод. За основу был взят электроэнцефалограф, применяемый в медицине для снятия биотоков с различных участков мозга. Если человек может различать характер биотоков, порождаемых различными мыслями или словесными приказами, то почему нельзя научить это делать компьютер?

Определить, каким командам соответствуют определенные биотоки, было довольно просто. Но оказалось, что одна и та же команда у разных людей выглядит на энцефалограмме по-разному. Чтобы решить эту проблему, Л. Пиннео вложил в память ЭВМ большое количество образцов одной и той же команды. Если компьютер сталкивался с новым человеком, он отыскивал в своей памяти образец наиболее похожих биотоков. Л. Пиннео обучил свой компьютер различать семь команд: "вверх", "вниз", "влево", "вправо", "медленно", "быстро" и "стоп". В опытах, где участвовали двадцать пять человек, компьютер угадал правильно 60 процентов команд. Возможно к 2001 году следует ожидать появления своеобразных "роботов-телепатов".

На высшую ступеньку поднимется и комплексная автоматизация производства. Безлюдные заводы, выполненные на основе роботов-манипуляторов или на базе других принципов, станут так же распространены и привычны, как сейчас промышленные манипуляторы.

Однако они будут кардинально отличаться от них степенью интеллектуальности. Созданные из типовых элементов, гибких производственных модулей и унифицированных блоков программного обеспечения, они будут объединены каналами связи в комплексные сети, подобные существующим уже сейчас сетям ЭВМ. Это позволит решать задачи глобального планирования и кооперированных поставок на уровне не только недостижимом, но и немыслимом на сегодняшний день.

предыдущая главасодержаниеследующая глава











© ROBOTICSLIB.RU, 2001-2019
При копировании материалов проекта обязательно ставить ссылку на страницу источник:
http://roboticslib.ru/ 'Робототехника'
Рейтинг@Mail.ru
Поможем с курсовой, контрольной, дипломной
1500+ квалифицированных специалистов готовы вам помочь