Новости
Библиотека
Карта сайтов
Ссылки
О сайте

30.08.2012

Живые мышцы пригодятся роботам

Исследователи из Массачусетского технологического института и Пенсильванского университета (оба — США) под общим руководством Гарри Асада создали искусственную мускульную клетку на основе генетически модифицированной клетки обычной мускулатуры.

Принципиальная схема мышцы, выращенной исследователями на базе миобластов и гидрогеля. (Иллюстрация H.Asada et al.)
Принципиальная схема мышцы, выращенной исследователями на базе миобластов и гидрогеля. (Иллюстрация H.Asada et al.)

Для управления сокращением-удлинением «новых» мышц используется пучок света.

Нацеливаясь на робототехнику, учёные выбрали скелетную (поперечно-полосатую) мышечную ткань: она состоит из мышечных волокон, составленных миосимпластами и миосателлитоцитами и покрытых общей базальной мембраной. Длина таких волокон не превышает нескольких сантиметров при толщине в 50–100 мкм. Именно она подходила больше всего, поскольку не только сильнее, чем ткани сердечной мышцы или гладкой мускулатуры (характерной для поверхности внутренних органов), но и, в отличие от сердечной мышцы, может управляться внешними импульсами.

Обычно в лабораториях импульсы от нервной ткани человека заменяют парой электродов, на которые подаётся напряжение. Но для робототехники это не очень приемлемо. Электроды нужно размещать в участках мышечной ткани с удручающей регулярностью, да и импульсы будут мешать работе остального электрооборудования робота. Оттого разработчики предпочли оптогенетику — новую дисциплину, созданную в 2005 году при участии того же Массачусетского технологического. Именно тогда нейроны были генетически модифицированы так, чтобы реагировать на короткие лазерные импульсы. В то время это нашло применение в опытах по стимуляции сердечной мышцы человека (вместо электроимпульсов).

При внешней простоте микроустройство имеет 10 степеней свободы. (Иллюстрация H.Asada et al.)
При внешней простоте микроустройство имеет 10 степеней свободы. (Иллюстрация H.Asada et al.)

Но и для робота это может быть выходом. Хотя нейронов в роботе нет, а для изменения клеток скелетной мускулатуры в подход пришлось внести ряд новаций. В культуре миобластов (клеток, из которых формируются мускульные волокна) были произведены генетические изменения, усиливающие выработку чувствительного к свету протеина. После сращивания миобластов в длинные волокна их освещали 20-миллисекундными импульсами синего света. При этом выяснилось, что импульсы не просто заставляют мышечные клетки сокращаться, но и делают это управляемо. Слабый импульс принуждает сокращаться только одно волокно, в то время как сильный — все сразу.

После этого первого в своём роде «беспроводного» опыта по управлению мышечной тканью исследовательская группа пошла дальше: волокна были интегрированы в гидрогель, формируя в паре с ним искусственную мышечную ткань. И она столь же хорошо управлялась лазерными импульсами, как и отдельные волокна.

Кроме того, выяснилось, что чем чаще измерялось усилие искусственной мышцы, тем сильнее она становилась: оперирование микромеханическим сенсором служило тренировкой, способствовавшей развитию волокон. В созданных гибких мышцах удалось добиться 120 степеней свободы при размерах менее 1 мм (рекордный результат для искусственных манипуляторов такого размера).

По мнению разработчиков, в будущем такие искусственные мышцы покажут себя, к примеру, в медицинских микророботах, способных путешествовать по кровеносным сосудам человека.

Отчёт о соответствующем исследовании в ближайшее время появится в журнале Lab on a Chip.

Александр Березин


Источники:

  1. КОМПЬЮЛЕНТА






Пользовательского поиска


Диски от INNOBI.RU



© Злыгостев Алексей Сергеевич, подборка материалов, оцифровка, статьи, оформление, разработка ПО 2001-2018
При копировании материалов проекта обязательно ставить активную ссылку на страницу источник:
http://roboticslib.ru/ "RoboticsLib.ru: Робототехника"